Geometry U-46 Curriculum Scope and Sequence

Reporting Strand	Instructional Focus	Common Core Standards	Pacing
	1.1 Explore building blocks of geometry	<u>G.CO.1</u>	
Geometric Transformations	2.1 Explore with transformations	G.CO.2, G.CO.3, G.CO.4, G.CO.5	5 weeks
	2.2 Investigate and apply congruence definitions	G.CO.6, G.CO.7	
Coordinate	1.2 Explore coordinate plane	G.GPE.4, G.GPE.6, G.GPE.7	
Plane	1.3 Explore congruence constructions	G.CO.12, .G.GPE.4	5 weeks
& Intersecting	3.1 Explore parallel and perpendicular lines	G.CO.12 <u>, G.GPE.5</u>	
Lines	3.2 Prove theorems about lines and angles	G.GPE.4, <u>G.CO.9</u>	
Triangle	4.1 Prove congruence theorems	G.CO.8, <u>G.CO.10</u> , G.SRT.5	4 weeks
Geometry (Congruence)	4.2 Construct special triangles and angles	G.CO.9, G.CO.12, G.CO.13	4 weeks
	5.1 Use dilations to show figures similar.	G.SRT.1, G.SRT.2	
Similarity	5.2 Explain and prove similarity theorems	<u>G.CO.10,</u> G.SRT.3, <u>G.SRT.4,</u> <u>G.SRT.5</u> , G.MG.3	4 weeks
	5.3 Apply similarity theorems (Extension Honors Only)	G.SRT.2, G.SRT.5	
	6.1 Investigate right triangle trigonometry	<u>G.SRT.6, G.SRT.7 , G.SRT.8</u> ,	
Trigonometry	6.2 Solve applied problems involving trigonometry (Extension Honors only)	G.SRT.10, G.SRT.11, N.Q.3, G.MG.3	3 weeks
	7.1-2 Investigate circles and apply formulas	G.C.1, <u>G.C.2</u> , G.C.4, <u>G.C.5</u> , G.GMD.1	
Circles	7.3 Investigate and interpret circle equations	<u>G.GPE.1</u> , G.GPE.4	6 weeks
	8.1 Investigate concurrency in triangles	<u>G.CO.10, G.C.3</u>	
Quadrilaterals	9.1 Construct and explore polygons	G.CO.13, <u>G.C.3</u>	4
& Other Polygons	9.2 Prove and apply theorems about quadrilaterals	G.CO.11, G.GPE.4	4 weeks
	10.1 Investigate cross sections and rotations	G.GMD.4, G.MG.1, G.MG.3	24
3-D Figures	10.2 Develop and apply volume formulas	G.MG.1, <u>G.MG.2</u> , G.MG.3, G.GMD.1, G.GMD.2, <u>G.GMD.3</u>	3-4 weeks

Standards that are **bolded and underlined** are the essential "power standards" for SAT

Geometric Transformations

1.1 Explore building blocks of geometry

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
CCSS Definitions of lines and angles (G.CO.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing •Connecting •Synthesizing • Applying	3 – Proficient Describe the following terms using points, lines, distance and circular arcs for <u>all</u> of the following: • Angles • Circles • Perpendicular Lines • Parallel Lines • Line Segments	2 - Basic Describe the following terms using points, lines, distance and circular arcs for <u>4</u> of the following: Angles Circles Perpendicular Lines Parallel Lines Line Segments	 1 - Below Basic Describe the following terms using points, lines, distance and circular arcs for <u>2</u> of the following: Angles Circles Perpendicular Lines Parallel Lines Line Segments 	 0 – No Evidence Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
	, ,				

G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

This standard may be reassessed in other reporting strands, as concepts are developed and taught.

Geometric Transformations

2.1 Explore with transformations

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent, describe and compare transformations (G.CO.2, G.CO.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Proving	Draw <u>and</u> describe transformations of reflections, rotations, translations, and combinations of these, including mapping a figure onto another. Describe reflections, translations, <u>and</u> <u>rotations</u> as functions that take points on the plane as inputs and give other points as outputs <u>Compare</u> transformations that preserve distance and angles to those that do not	Draw <u>or</u> describe transformations of reflections, <u>rotations</u> , translations, <u>and a</u> <u>combination of these</u> , including mapping a figure onto another. <u>Describe</u> reflections and translations as functions that take points on the plane as inputs and give other points as outputs <u>Describe</u> transformations that preserve distance and angles to those that do not	Draw <u>and</u> describe a singular transformation of reflections and translations, including mapping a figure onto another. Given a function rule for reflections and translations, <u>identify the</u> <u>outputs</u> <u>Identify</u> transformations that preserve distance and angles to those that do not	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Describe symmetry (G.CO.3)		Describe <u>and</u> illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe <u>or</u> illustrate rotations and reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	Describe <u>or</u> illustrate rotations or reflections of a rectangle, parallelogram, trapezoid, or regular polygon that carry each figure onto itself.	
Develop definitions of transformations (G.CO.4)		Develop the definition of all the terms rotations, reflections and translations in terms of: Angles Circles Perpendicular lines Parallel lines Line segments.	Develop the definition <u>for 4 of the terms</u> rotations, reflections and translations in terms of: Angles Circles Perpendicular lines Parallel lines Line segments.	Develop the definition <u>for</u> <u>2 of the terms</u> rotations, reflections and translations in terms of: • Angles • Circles • Perpendicular lines • Parallel lines • Line segments.	

- G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Geometric Transformations

2.2 Investigate and apply congruence definitions

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Predict and decide congruency (G.CO.6) Corresponding sides and angles (G.CO.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Use descriptions of rigid motions to predict the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: • decide if two given figures are congruent • prove that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to <u>show</u> the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: • decide if two given figures are congruent • <u>show</u> that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Use descriptions of rigid motions to <u>identify</u> the effect of a rigid motions on a figure Use the definition of congruence in terms of rigid motions to: • decide if two given figures are congruent • <u>identify</u> that corresponding sides are congruent and corresponding angles are congruent in a pair of congruent triangles	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
- G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

1.2 Explore coordinate plane

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Find the point (G.GPE.6)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Find the point on a line segment, given two endpoints that divide <u>the segment into a</u> given ratio.	Find the point on a line segment, given two endpoints, that divides a <u>horizontal or vertical</u> <u>segment into a given</u> <u>ratio</u> .	Find the point on a line segment, given two endpoints, that divides the <u>segment in half.</u>	Little evidence of reasoning or application to solve the problem Does not meet
Prove using formulas (G.GPE.4) Perimeter and area (G.GPE.7)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do both of the following • find the perimeter of polygons. • find the area <u>of</u> <u>polygons using</u> triangles and rectangles	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do <u>both</u> of the following • find the perimeter of polygons. • find the area of triangles and rectangles	Using coordinate geometry and the Pythagorean, slope, distance and midpoint formulas to do <u>one</u> of the following find the perimeter of polygons. find the area of triangles and rectangles	the criteria in a level 1

- G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
- G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
- G.GPE.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

Embedded standard not summatively assessed.

G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

1.3 Explore congruence constructions

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Constructio n of lines and angles (G.CO.12)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Use a variety of tools to perform both of the following <u>with precision:</u> • copy a segment • copy an angle	Use a variety of tools to perform <u>both</u> of the following: • copy a segment • copy an angle	Use a variety of tools to perform <u>1</u> of the following: • copy a segment • copy an angle	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove using formulas (G.GPE.4)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>all</u> of the following Segments on a coordinate plane are congruent Segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>two</u> of the following Segments on a coordinate plane are congruent Segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	 Using coordinate geometry and the slope, distance and midpoint formulas to prove <u>one</u> of the following Identify if segments on a coordinate plane are congruent Identify If segments on a coordinate plane are perpendicular Segments on a coordinate plane are parallel 	

- G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
- G.GPE.4 Use coordinates to prove simple geometric theorems algebraically.

3.1 Explore parallel and perpendicular lines

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construction of lines and angles (G.CO.12)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating	Use a variety of tools and methods to perform both of the following <u>with</u> <u>precision:</u> • Construct perpendicular lines • Construct a line parallel to a given line through a point not on the line.	Use a variety of tools and methods to perform both of the following: • Construct perpendicular lines • Construct a line parallel to a given line through a point not on the line.	Use a variety of tools and methods to perform <u>one</u> of the following: Construct perpendicular lines Construct a line parallel to a given line through a point not on the line.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove and use parallel and perpendicular lines (G.GPE.5)	Proving	Prove <u>a pair of lines</u> are parallel or perpendicular using slope Write the equation of a line that is parallel <u>and</u> perpendicular to a given line that passes through a given point	Given the slope of 1 line, prove if a pair of lines are parallel or perpendicular Write the equation of a line that is parallel <u>or</u> perpendicular to a given line that passes through a given point	Given the slope of a pair of lines, identify the lines are parallel or perpendicular Identify the equation of a line that is parallel or perpendicular to a given line that passes through a given point	

G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Embedded standard not summatively assessed.

G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

3.2 Prove theorems about lines and angles

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Prove lines and angles (G.CO.9, G.GPE.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Justifying Critiquing Analyzing Creating Proving	 Prove all of the following theorems Vertical angles are congruent. When a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent 	 Show mathematically all of the following theorems Vertical angles are congruent. When a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent 	 Identify all of the following Vertical angles are congruent. When a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, V3) lies on the circle centered at the origin and containing the point (0, 2).
- G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

Embedded standard not summatively assessed. This concept can be used as a reassessment opportunity.

G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Triangle Geometry

4.1 Prove congruence theorems

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Explain triangle congruence (G.CO.8)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Prove SSS, SAS, and ASA triangle congruence using rigid motion.	Identify all SSS, SAS, ASA, AAS, and HL triangle congruence <u>using rigid</u> <u>motion</u> <u>Identify missing parts</u> <u>based on a congruence</u> <u>postulate.</u>	Identify if triangles are congruent and by which method (SSS, SAS, ASA, AAS or HL)	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove triangle theorems (G.CO.10)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	 Prove <u>both</u> of the following theorems measures of interior angles of a triangle sum to 180° base angles of isosceles triangles are congruent 	 Prove <u>one</u> of the following theorems measures of interior angles of a triangle sum to 180° base angles of isosceles triangles are congruent 	Use the following theorems to mathematically solve for missing angles • measures of interior angles of a triangle sum to 180° • base angles of isosceles triangles are congruent	
Solve and prove relationships (G.SRT.5)		Solve <u>and prove</u> geometric problems using congruence criteria	Solve <u>and prove</u> geometric problems, <u>given a proof</u> <u>frame,</u> using congruence criteria	Solve geometric problems using congruence criteria	

G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Triangle Geometry

4.2 Construct special triangles and angles

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construction of lines and angles (G.CO.12, G.CO.13, G.CO.9)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Justifying Critiquing Analyzing Creating Proving	Use a variety of tools to perform all of the following: Bisect a segment Construct the perpendicular bisector of a segment Construct an equilateral triangle	Use a variety of tools to perform 3 of the following: Bisect a segment Construct the perpendicular bisector of a segment Construct an equilateral triangle	Use a variety of tools to perform 2 of the following: Bisect a segment Construct the perpendicular bisector of a segment Construct an equilateral triangle	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- G.CO.9 Prove theorems about lines and angles: points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
- G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
- G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Similarity

5.1 Use dilations to show figures similar

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Properties of Dilations (G.SRT.1) Explain similarity (G.SRT.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying	Verify that when a side passes through the center of dilation, <u>the</u> <u>side and its image lie on</u> <u>the same line.</u> Verify that corresponding sides of the pre-image and images are <u>parallel</u> <u>and</u> proportional after dilation.	Given an image and the pre-image, <u>determine</u> <u>the center of dilation</u> Verify that corresponding sides of the pre-image and images are <u>proportional by finding</u> <u>the scale factor.</u>	Perform dilation with a given center and scale factor on a figure in the coordinate plane.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
	 Critiquing Analyzing Creating Proving 	 Explain <u>using</u> <u>transformations</u> if two figures are similar by verifying corresponding angles are congruent corresponding sides are proportional 	 Explain if two figures are similar by verifying corresponding angles are congruent corresponding sides are proportional 	 Show mathematically if two figures are similar by verifying corresponding angles are congruent corresponding sides are proportional 	

G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor:

a. dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

b. the dilation of a line segment is longer or shorter in the ratio given by the scale factor.

G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Similarity 5.2 Explain and prove similarity theorems

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Prove similar triangles (G.SRT.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	 Use AA~ to <u>formally</u> <u>prove</u> triangles similar (two-column, paragraph, etc). 	 <u>Prove</u> AA~ using <u>transformations</u>. 	Identify if triangles are similar by: • AA~ • SAS~ • SSS~	Little evidence of reasoning or application to solve the problem
Solve and prove relationships (G.SRT.5, G.MG.3)	 Designing Connecting Synthesizing Applying Justifying 	Solve and prove real world geometric problems using congruence and similarity	Solve <u>real world</u> geometric problems using congruence <u>and</u> similarity	Solve <u>mathematical</u> geometric problems using congruence <u>and</u> similarity	Does not meet the criteria in a level 1
Prove triangle theorems (G.SRT.4, G.CO.10)	 Justifying Critiquing Analyzing Creating Proving 	 Prove all of the following theorems: a line parallel to one side of a triangle divides the other two proportionally if a line divides two sides of a triangle proportionally; then it is parallel to the third side. Pythagorean Theorem proved using triangle similarity 	 Prove 2 of the following theorems: a line parallel to one side of a triangle divides the other two proportionally if a line divides two sides of a triangle proportionally; then it is parallel to the third side. Pythagorean Theorem proved using triangle similarity 	 Prove1 of the following theorems: a line parallel to one side of a triangle divides the other two proportionally if a line divides two sides of a triangle proportionally; then it is parallel to the third side. Pythagorean Theorem proved using triangle similarity 	

G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

G.SRT.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

- G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
- G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★

Similarity 5.3 Apply similarity theorems (Extension – Honors Only)

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve and prove relationships (G.SRT.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Solve and prove geometric problems using congruence and similarity	Solve geometric problems using congruence <u>and</u> similarity	Solve geometric problems using congruence <u>or</u> similarity	Little evidence of reasoning or application to solve the problem Does not meet
Explain similarity (G.SRT.2)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Verify that corresponding sides of the pre-image and images are parallel and proportional after dilation. Explain <u>using</u> <u>transformations</u> if two figures are similar by verifying • corresponding angles are congruent • corresponding sides are proportional	Verify that corresponding sides of the pre-image and images are proportional by finding the scale factor. Explain if two figures are similar by verifying corresponding angles are congruent corresponding sides are proportional	 Show mathematically if two figures are similar by verifying corresponding angles are congruent corresponding sides are proportional 	Does not meet the criteria in a level 1

G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Trigonometry 6.1 Investigate right triangle trigonometry

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand side ratios (G.SRT.6) Use sine and cosine (G.SRT.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying	Use properties of similar right triangles to <u>form the definitions</u> of • sine • cosine • tangent <u>Explain and use the</u> <u>relationship between</u> <u>the sine of an acute</u> <u>angle and the cosine of</u> <u>its complement</u> .	Use side ratios to prove angles are congruent between triangles leading to similar triangles.	Find the trig ratios of a given right triangle.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Use Trig Ratios (G.SRT.8)	 Critiquing Analyzing Creating Proving 	Use trigonometric ratios and the Pythagorean Theorem in applied problems to find • unknown sides • unknown angles	Given an image, use trigonometric ratios and the Pythagorean Theorem in applied problems to find unknown sides unknown angles	Given an image, solve right triangles using trigonometric ratios for: unknown sides unknown angles	

G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

- G.SRT.7 Explain and use the relationship between the sine and cosine of complementary angles.
- G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. 🖈

Trigonometry

6.2 Solve applied problems involving trigonometry (Honors Only)

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
					Evidence
G.SRT.10,	Can extend	Prove the Law of Sines	Apply the Law of Sines	Identify whether the Law	Little
G.SRT.11,	thinking beyond	and the Law of Cosines,	and the Law of Cosines to	of Sines or the Law of	evidence of
G.MG.3	the standard,	and apply them to find	<u>find unknown</u>	Cosines should be applied	reasoning or
	including tasks	unknown measurements	measurements in oblique	to an oblique triangle to	application
	that may involve	in oblique triangles <u>and</u>	<u>triangles</u>	find unknown	to solve the
	one of the	interpret solutions in		measurements, and if the	problem
	following:	context of real-world		ambiguous case applies	
		<u>situations</u>		to the triangle.	Does not
	 Designing 				meet the
	 Connecting 				criteria in a
	 Synthesizing 				level 1
	, ,				
	Applying				
	 Justifying 				
	 Critiquing 				
	 Analyzing 				
	 Creating 				
	 Proving 				
			l	1	

G.SRT.10 (+) Prove the Laws of Sines and Cosines and use them to solve problems.

G.SRT.11 (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

G.MG.A.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

Circles 7.1-7.2 Investigate circles and apply formulas

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Circle relationships (G.C.2)	thinking beyond relationship to calculate relationship to calculate cal	circumscribed angles	Little evidence of reasoning or application to solve the problem Does not meet the criteria in		
Prove and explain (G.C.1, G.C.5)	 Justifying Critiquing Analyzing Creating Proving 	 Use similarity to prove: Circles are similar using transformations The length of the arc intercepted by an angle is proportional to the radius 	 Use similarity to do <u>all</u> of the following: Prove circles are similar using transformations Calculate the length of an arc 	 Use similarity to do <u>one</u> of the following: Prove circles are similar using transformations Calculate the length of an arc 	a level 1
		Define the radian measure of the angle as the constant of proportionality Derive and explain the formula for the area of a sector	<u>Calculate</u> a radian measure when given an arc length and its radius. Given the area of a sector <u>, find the radius</u>	<u>Convert</u> degrees to radians using the constant of proportionality <u>Find the area</u> of a sector	
G.GMD.1		Give an informal argument for the formulas for the circumference of a circle <u>and</u> area of a circle	Give an informal argument for the formulas for the circumference of a circle <u>or</u> area of a circle	Use formulas for circumference and area of a circle to solve problems	
Constructions (G.C.4)		Construct a tangent line from a point outside a given circle to a circle with precision.	Construct a tangent line from a point outside a given circle to a circle.	Construct a tangent line from a point on a circle.	

G.C.1 Prove that all circles are similar.

G.C.2 Identify and describe relationships among inscribed angles, radii, and chords. *Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.*

G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

G.C.4 Construct a tangent line from a point outside a given circle to the circle.

G.C.5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

G.GMD.1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments

Circles 7.3 Investigate and interpret circle equations.

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Derive the equation (G.GPE.1, GPE.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Proving	Explain why the Pythagorean Theorem can be used to derive the equation of a circle, given the center and radius Complete the square when <i>a</i> is greater than <u>1</u> to find the center and radius of a circle when given an equation of a circle. Justify whether a point lies on a circle given the center and a point on the circle.	Use the Pythagorean theorem to find the equation of a circle Complete the square when <i>a</i> equals 1 to find the center and radius of a circle when given an equation of a circle. Determine whether a point lies on a circle given the center of the circle and the radius .	Use the Pythagorean theorem to find the <u>radius</u> of a circle <u>Given guided steps</u> , complete the square <u>when <i>a</i> equals 1</u> to find the center and radius of a circle when given an equation of a circle. <u>Given the equation</u> determine whether a point lies on a circle.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point (0, 2).

Circles 8.1 Concurrency in Triangles

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Concurrency in Triangles (G.CO.10)	Can extend thinking beyond the standard, including tasks that may involve one of the	Prove the medians of a triangle meet at a point.	Use constructions to show the medians of a triangle meet at a point.	Identify the properties of a centroid	Little evidence of reasoning or application to solve the problem
Constructions (G.C.3)	 one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	 Construct <u>both</u> of the following: the inscribed circle of a triangle. the circumscribed circle of a triangle. 	 Construct <u>one</u> of the following: the inscribed circle of a triangle. the circumscribed circle of a triangle. 	 Identify the following: incenter is the intersection of the angle bisectors circumcenter is the intersection perpendicular bisectors 	Does not meet the criteria in a level 1

- G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
- G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Quadrilaterals and Other Polygons

9.1 Construct and explore polygons

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construct triangles and hexagons (G.CO.13)	Can extend thinking beyond the standard, including	Construct an inscribed regular hexagon <u>and</u> an inscribed square	Construct an <u>inscribed</u> regular hexagon or an inscribed square	Construct a square given a side	Little evidence of reasoning or application to solve the
Prove quadrilateral properties (G.C.3)	tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	<u>Prove</u> properties of angles for a quadrilateral inscribed in a circle.	Show mathematically properties of angles for a quadrilateral inscribed in a circle.	Identify properties of angles for a quadrilateral inscribed in a circle.	problem Does not meet the criteria in a level 1

G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Quadrilaterals and Other Polygons

9.2 Prove theorems about quadrilaterals

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Prove parallelogram theorems (G.CO.11)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	 Prove all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	 Show mathematically all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	 Identify all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove with coordinates (G.GPE.4)		Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>prove the</u> <u>types of quadrilaterals</u>	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>identify the</u> <u>types of quadrilaterals</u>	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>identify</u> <u>properties of</u> <u>guadrilaterals</u>	

G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, v3) lies on the circle centered at the origin and containing the point (0, 2).

3D Figures 10.1 Investigate Cross Sections and Rotations

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify objects (G.GMD.4) Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting	Identify the shapes of two dimensional cross sections of three dimensional objects <u>and</u> identify three dimensional objects generated by rotations of two dimensional objects.	Identify the shapes of two dimensional cross sections of three dimensional objects <u>or</u> identify three dimensional objects generated by rotations of two dimensional objects.		Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1	
Use Shapes (G.MG.1) Solve design problems (G.MG.3)	 Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Describe objects in context of a situation using geometric shapes their measures, and properties <u>and use</u> <u>them to solve problems</u> <u>related to</u>	Describe objects in context of a situation using geometric shapes, <u>their measures, and</u> <u>properties</u>	Describe objects in context of a situation using geometric shapes	

G.GMD.4 Identify the shapes of two dimensional cross sections of three dimensional objects, and identify three dimensional objects generated by rotations of two dimensional objects.

- G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★
- G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

3D Figures 10.2 Develop and apply volume formulas

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Use Shapes and apply density concepts (G.MG.1, G.MG.2) Solve design problems (G.MG.3) Explain Formulas (G.GMD.1) Use Volume Formulas (G.GMD.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Describe objects in context of a situation using geometric shapes and use them to solve problems related to <u>density based</u> on area and volume design problems (ie. maximum volume, minimum cost, etc.) Explain the formulas for <u>all</u> <u>of the following</u> volume of a cylinder volume of a pyramid volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle Use volume formulas for cylinders, pyramids, cones,	Describe objects in context of a situation using geometric shapes and use them to solve problems related to • area and volume • design problems Explain the formulas for <u>2 of</u> the following • volume of a cylinder • volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle Use volume formulas for cylinders, pyramids, cones,	Describe objects in context of a situation using geometric shapes and use them to solve problems related to • area and volume Explain the formulas for 1 of the following • volume of a cylinder • volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle Use volume formulas for cylinders, pyramids, cones,	Evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
		and spheres to solve problems in context of a situation.	and spheres to solve problems <u>in context of a</u> <u>situation.</u>	and spheres to solve problems	

G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★

G.MG.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). \star

G.GMD.1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and *informal limit arguments*.

G.GMD.2 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. \bigstar